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Preface

Although the underlying principles of medical imaging have not changed in the
nine years since the first edition of this book was published, the instrumentation
and practices have continued to evolve and improve. This second edition
maintains the signals and systems focus of the first edition, with up-to-date
descriptions of instrumentation. We still cover the most important imaging
modalities in radiology: projection radiography, x-ray computed tomography,
nuclear medicine scintigraphy and emission tomography, ultrasound imaging,
and magnetic resonance imaging. But we now provide additional material
on digital radiography, multi-row detector CT systems, 3D ultrasound, both
functional and diffusion-weighted magnetic resonance imaging, and much more.
As before, we expect the reader to be familiar with signals and systems, which are
usually covered in the sophomore year of most engineering curricula, and with
elementary probability. Freshman courses in physics, chemistry, and calculus
are also assumed.

As with the first edition, the book is organized into parts emphasizing
key overall conceptual divisions. Part I introduces basic imaging principles,
including an introduction to medical imaging systems in Chapter 1, a review
of signal processing (with emphasis on two-dimensional signals) in Chapter 2,
and a discussion of image quality in Chapter 3. Our presentation of the theory
of medical imaging systems is strongly based on continuous signals; however, a
development of discrete signals is included to permit discussions on sampling and
implementation. Issues of image quality, including resolution, noise, contrast,
geometric distortion, and artifacts are described in a general context here, and
are revisited within each modality in subsequent chapters.

Part II describes key modalities in radiographic imaging. It begins in
Chapter 4 with a brief presentation of the physics of radiography, including
the generation and detection of ionizing radiation and its effect on the human
body. Chapter 5 describes projection radiography systems, including chest x-ray,
fluoroscopy, and mammography systems. As in all subsequent chapters, cover-
age focuses on signals, including only enough physics and biology to motivate
the modality and provide a model for the analysis. Chapter 5 also presents the
mathematics of projection imaging, a very fundamental idea in medical imaging.
Chapter 6 covers x-ray computed tomography, expanding on the instrumen-
tation and mathematics of projection imaging and introducing the concept
of image reconstruction in medical imaging. Computed tomography produces
true tomograms (images of cross sections of the body) rather than projections
of the body.

Part III presents the physics and modalities of nuclear medicine imaging.
Chapter 7 describes the physics of nuclear medicine, focusing primarily on the
concept of radioactivity. The major modalities in nuclear medicine imaging are
described in Chapter 8, which covers planar scintigraphy, and Chapter 9, which
covers emission computed tomography.

xv



xvi Preface

Part IV covers ultrasound imaging. It begins in Chapter 10 with a brief
presentation of the physics of sound, and continues in Chapter 11 with the
various imaging modes offered within this rich modality. Part V covers mag-
netic resonance imaging. Chapter 12 presents the physics of nuclear magnetic
resonance, and Chapter 13 continues with a presentation of various magnetic
resonance imaging techniques.

We have used the first edition of this book for a one-semester upper-
level/graduate course on medical imaging systems. In order to cover the material
in one semester, we routinely skip some material in the book, and we move
at a very brisk pace. Although it was very tempting to add more depth
in modern instrumentation, reconstruction methods, and diagnostic uses of
medical imaging, we feel that this breadth of material could not be covered in
one semester with sufficient depth, and would be inconsistent with our primary
goal of providing a unified view of medical imaging from a signals and systems
point of view. On the other hand, we feel that this book could be used as the basis
for a two-semester course, perhaps by covering Parts I–III in the first semester
and Parts IV–V in the second semester. A two-semester approach would allow
instructors to use supplementary materials for additional depth in the physics
and instrumentation of medical imaging, or to present current research topics.

Medical imaging is very visual—just ask any radiologist. Although the
formalism of signals and systems is mathematical, we understand the advan-
tages offered through visualization. Therefore, the book contains many images
and diagrams. Some are strictly pedagogical, offered in conjunction with the
exposition or an example problem. Others are motivational, revealing inter-
esting features for discussion or study. Special emphasis is made to provide
biologically relevant examples, so that the important context of medical imag-
ing can be appreciated by students. Many images have been added or replaced
in this edition, in order to provide better coverage of current use and to provide
reference images to help explain features and qualities of the various modalilties.

New to This Edition
The second edition of this book arose primarily from the need to provide
updates to the technology and methods in medical imaging systems, which have
undergone substantial development since the first edition. At the same time,
we were able to incorporate changes to the organization of the book and to
improve certain aspects of pedagogy. Instructors and students alike now have
more modern material from the core medical imaging modalities while still
maintaining the signal processing perspective in a unified treatment of medical
imaging signal and systems.

The most significant changes to this new edition include:

• Completely rewritten overview sections including many new images to better
motivate and explain the core modalities that use x-rays, radioactivity,
ultrasound, and nuclear magnetic resonance.

• New sections on digital radiography systems and mammography in projec-
tion radiography.

• A new section on multi-row detectors in computed tomography.



Preface xvii

• A new section on iterative reconstruction in emission tomography in nuclear
medicine.

• New sections on nonlinear wave propagation and harmonic imaging in
ultrasound imaging.

• New development and presentation of imaging equations in planar scintig-
raphy, single photon emission computed tomography, and positron emission
tomography.

• New sections on three-dimensional imaging, noise, and speckle in ultrasound
imaging.

• New sections on susceptibility weighted imaging, functional magnetic res-
onance imaging, and diffusion magnetic resonance imaging in magnetic
resonance imaging.

• Reorganization of the chapters on signals and systems and image quality to
encourage a better pedagological flow.

• Many new problems, added primarily to the chapters having relatively fewer
problems in the first edition. There are a total of 261 problems in this second
edition.
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P A R T

I
Basic Imaging
Principles

Overview
What does the human body look like on the inside? The smart answer: It depends
on how you look at it. The most direct way to look inside the human body is to
cut it open, for example, through surgery. A refinement of this procedure might
be to use an endoscope, essentially a light tube that is ‘‘threaded’’ through the
body, which conveys an image to a display device. Both methods offer direct
optical viewing, but also involve cutting the body, putting something in it, or
both. These are invasive techniques, which cause (potential) damage or trauma
to the body.

The beauty of medical imaging is that we can see inside the human body
in ways that are less invasive than surgery or endoscopy. In some cases—for
example, magnetic resonance imaging (MRI) and ultrasound imaging—the
methods are completely noninvasive and risk-free so far as we know. In other
cases—for example, projection radiography, x-ray computed tomography (CT),
and nuclear medicine—there is some risk associated with the radiation exposure,
even though these methods are considered noninvasive as well.

Fundamentally, these medical imaging techniques mean that we do not need
to cut the body or put a physical device into it in order to ‘‘see inside.’’ Of perhaps
even greater importance, these techniques allow us to see things that are not
visible to the naked eye in the first place. For example, functional magnetic
resonance imaging (fMRI) allows us to obtain images of organ perfusion or
blood flow, and positron emission tomography (PET) allows us to obtain
images of metabolism or receptor binding. In other words, the various imaging
techniques allow us to see inside the body in different ways—the ‘‘signal’’ is
different in each case and can reveal information which the other methods
cannot. Each of these different methods is a different imaging modality, and the
‘‘signals’’ that arise are intrinsically different. This hearkens back to the opening
question: What does the human body look like on the inside? The answer: It
depends on the measured signal of interest.



2 Part I Basic Imaging Principles

In this book, we use a signals and systems approach to explain and analyze
the most common imaging methods in radiology today. We want to answer
the question: What do the images look like and why? We will discover that
medical imaging physics allows us to image certain parameters of the body’s
tissues, such as reflectivity in ultrasound imaging, linear attenuation coefficient
in computed tomography, and hydrogen proton density in magnetic resonance
imaging. These physical parameters, which one can think of as ‘‘signals’’ within
the body, represent the input signal into an imaging system. In medical imaging,
the ‘‘object’’ or ‘‘signal’’ arising from the patient depends on the physical
processes governing a given imaging modality. Thus, a given patient represents
an ensemble of different objects or signals. In considering a given medical
image, it is thus important to start with the physics that underlie the creation
of signals from the patient for that modality. Accordingly, each part of this
book is organized such that the first chapter describes the relevant physics, and
subsequent chapters describe those modalities based on the specific physical
processes of that part.

The first output of any medical imaging system is based on physical
measurements, which might be returning echoes in an ultrasound system, x-ray

Figure I.1
The four main medical
imaging signals discussed
in this book: (a) x-ray
transmission through the
body, (b) gamma ray
emission from within the
body, (c) ultrasound
echoes, and (d) nuclear
magnetic resonance
induction. The
corresponding medical
imaging modalities are
projection radiography,
planar scintigraphy,
ultrasound imaging, and
magnetic resonance
imaging. All images
courtesy of GE
Healthcare.

(a)

(c) (d)

(b)
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intensities in a CT system, or radio frequency waves in an MRI system. The
final output in this system is created through image reconstruction, the process
of creating an image from measurements of signals. The overall quality of a
medical image is determined by how well the image portrays the true spatial
distribution of the physical parameter(s) of interest within the body. Resolution,
noise, contrast, geometric distortion, and artifacts are important considerations
in our study of image quality. Ultimately, the clinical utility of a medical image
involves both the image’s quality and the medical information contained in the
parameters themselves.

Figure I.1 shows the four main medical imaging signals discussed in this
book: (1) x-ray transmission through the body, (2) gamma ray emission from
within the body, (3) ultrasound echoes, and (4) nuclear magnetic resonance
induction. Part II covers modalities that use x-ray transmission signals, Part III
covers modalities that use gamma ray emission, Part IV covers modalities that use
ultrasound signals, and Part V covers magnetic resonance imaging, which uses
signals that arise from nuclear magnetic resonance. The specific medical imaging
modalities depicted in Figure I.1 are (1) projection radiography, (2) positron
emission tomography, (3) ultrasound imaging, and (4) magnetic resonance
imaging.

In Figure I.1, parts (a) and (b) represent two-dimensional projection images
of the three-dimensional human body. A projection is created as a two-
dimensional ‘‘shadow’’ of the body, a process that is illustrated in Figure I.2.
Figures I.1(c) and (d) are slices within the body. Figure I.3 depicts the three

Figure I.2
The creation of a
two-dimensional
projection through the
body. In this case, x-rays
are transmitted through a
patient creating a
radiograph.
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Figure I.3
The three standard
orthogonal tomographic
or slice or section views:
(a) axial or transaxial or
transverse, (b) coronal or
frontal, and (c) sagittal. (a) (c)(b)

Figure I.4
Representative transverse
slice through the brain
from three different
imaging modalities: (a)
computed tomography,
(b) magnetic resonance
imaging, and (c) positron
emission tomography. (a) (c)(b)

standard orientations of slice (or tomographic) images, axial, coronal, and
sagittal. Figure I.1(d) is a sagittal slice, while Figure I.1(c) is an oblique slice,
that is, an orientation not corresponding to one of the standard slice orientations.

Figure I.4 also shows slice images. In this case, each image is a transverse
slice, oriented perpendicular to the head and body axis through the brain. Each
image is obtained from a different imaging modality: (a) computed tomography,
(b) magnetic resonance imaging, and (c) positron emission tomography. Even
though each image depicts (a slice through) the brain, the images are strikingly
different, because the signals giving rise to each image are themselves strikingly
different. In this part of the book, we study the common signal processing
concepts that relate to all imaging modalities, setting the groundwork for
adding the physical differences that account for the different appearances of the
imaging modalities, and hence their different uses in medicine.
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C H A P T E R

11
In this book, we take a signals and systems approach to the characterization of
medical imaging. As discussed in the Overview, there are a variety of signals in
which we are interested; ultimately, this interest stems from the biological and
medical significance of these signals in patients with various diseases. In practice,
these signals are transformed into images via medical imaging modalities. In this
chapter, we begin to consider these modalities and their characteristics.

1.1 History of Medical Imaging
The first published medical image was a radiograph of the hand of Wilhelm Con-
rad Roentgen’s wife in December 1895. Roentgen had been experimenting with
a Crooke’s tube (the forerunner of today’s x-ray tube) and noticed that ‘‘a new
kind of rays’’ (hence, x-rays) were emitted that could expose a photographic
plate even when optically shielded. It was immediately obvious to Roentgen that
his discovery could have a profound impact in medicine. Indeed, the first clinical
use of x-rays occurred only two months later, in February 1896. The use of x-rays
became widespread, and both static and dynamic (fluoroscopic) techniques were
developed. Here, a static technique refers to an image taken at a single point in
time, whereas a dynamic technique refers to a series of images acquired over time.

For many decades, these planar (i.e., two-dimensional projection) radio-
graphs were the only medical images being produced. Ultimately, radiography
was extended into transmission computed tomography, or cross-sectional imag-
ing. Godfrey Hounsfield produced the first true computed tomography (CT)
scanner in 1972 at EMI in England. He used mathematical methods for image
reconstruction developed a decade earlier by Allan Cormack of the United
States. Hounsfield and Cormack shared the Nobel Prize in Medicine in 1979.
Many radiologists consider CT scanning to be the most important development
in medical imaging since Roentgen’s original discovery.

As radiography arose from the discovery of x-rays, nuclear medicine arose
from the discovery of radioactivity by Antoine Henri Becquerrel in 1896.
Initially, radionuclides were used in cancer therapy rather than in medical

5
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imaging. The concept of using radioactive tracers to study physiology was
introduced by George de Hevesy in 1923; de Hevesy is considered the father
of nuclear medicine. A radiotracer is a radioactively labeled drug that mimics
a biological compound of interest; the distribution of the radioactivity implies
the distribution of the drug. Early studies with radiotracers used conventional
nonimaging radiation detectors to roughly determine amounts of radioactivity
in various body regions. In 1949, Benedict Cassen at UCLA started the
development of the first imaging system in nuclear medicine, the rectilinear
scanner. The modern Anger scintillation camera was developed by Hal Anger
at UC Berkeley in 1952. The element of the most commonly used radionuclide
in nuclear medicine, technetium-99m, was discovered in 1937 by Carlo Perrier
and Emilio Segre; its first use in medicine was in 1961.

The interaction of acoustic waves with media was first described by Lord
John Rayleigh over one hundred years ago in the context of the propagation
of sound in air. Modern ultrasound imaging had its roots in World War II
Navy sonar technology, and initial medical applications focused on the
brain. Ultrasound technology progressed through the 1960s from A-mode,
B-mode, and M-mode scans to today’s two-dimensional (2-D) Doppler,
three-dimensional (3-D), and nonlinear imaging systems.

The phenomenon of nuclear magnetic resonance, from which magnetic
resonance imaging (MRI) arises, was first described by Felix Bloch and Edward
Purcell; they shared the 1952 Nobel Prize in Physics. This work was extended
by Richard Ernst, who received the Nobel Prize in Chemistry in 1991. In
1971, Raymond Damadian published a paper suggesting the use of magnetic
resonance (MR) in medical imaging; in 1973, a paper by Paul Lauterbur
followed. Lauterbur received the Nobel Prize in Medicine in 2003, along with
Peter Mansfield, who developed key methods in MRI.

1.2 Physical Signals
In this book, we consider the detection of different physical signals arising from
the patient and their transformation into medical images. In practice, these
signals arise from four processes:

• Transmission of x-rays through the body (in projection radiography and CT)

• Emission of gamma rays from radiotracers in the body (in nuclear medicine)

• Reflection of ultrasonic waves within the body (in ultrasound imaging)

• Precession of spin systems in a large magnetic field (in MRI)

Radiography, CT scanning, and nuclear medicine all make use of elec-
tromagnetic energy. Electromagnetic energy or waves consist of electric and
magnetic waves traveling together at right angles. Wavelength and frequency
are inversely related; frequency and energy are directly related. The electromag-
netic spectrum spans the frequency range from zero to that of cosmic rays;
only a relatively small portion of this spectrum is useful in medical imaging.
At long wavelengths—for example, longer than 1 angstrom—most electromag-
netic energy is highly attenuated by the body, prohibiting its exit and external
detection. At wavelengths shorter than about 10−2 angstroms, the corresponding
energy is too high to be readily detected.
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In this book, we express energy in units of electron volts (eV), where
1 eV is the amount of energy an electron gains when accelerated across 1 volt
potential. We will concentrate on electromagnetic radiation whose wavelengths
correspond to energies of roughly 25–500 keV.

Ultrasound imaging utilizes sound waves, and considerations of attenuation
and detection are similar to those above. Image resolution is not adequate when
wavelengths longer than a couple of millimeters are used, and attenuation is
too high for very short wavelengths. An ideal frequency range for ultrasound in
medical imaging is 1–20 MHz, where 1 Hz = 1 cycle/second.

The signal in MRI arises from the precession (like the motion of a child’s
top or dreidel) of nuclei of the hydrogen atom—that is, protons. When placed
in a large magnetic field, collections of protons, termed spin systems, can be
set into motion by applying radio frequency (RF) currents through wire coils
surrounding the patient. Although these spin systems precess at RF frequencies
(64 MHz is typical), the primary signal source is not from radio waves, but from
the Faraday induction of currents in the same or different wire coils.

1.3 Imaging Modalities
The medical imaging areas we consider in detail in this book are projection
radiography, CT, nuclear medicine, ultrasound imaging, and MRI. An imaging
modality is a particular imaging technique or system within one of these
areas. In this section, we give a brief overview of these most common imaging
modalities.

Projection radiography, CT, and nuclear medicine all use ionizing radiation.
The first two transmit x-rays through the body, then use the fact that the body’s
tissues selectively attenuate (reduce) the x-ray intensities to form an image.
These are termed transmission imaging modalities because they transmit energy
through the body. In nuclear medicine, radioactive compounds are injected into
the body. These compounds or tracers move selectively to different regions or
organs within the body, emitting gamma rays with intensity proportional to
the compound’s local concentration. Nuclear medicine methods are emission
imaging modalities because the radioactive sources emit radiation from within
the body.

Ultrasound imaging transmits high-frequency sound into the body and
receives the echoes returning from structures within the body. This method is
often called reflection imaging because it relies on acoustic reflections to create
images. Finally, MRI requires a combination of a high-strength magnetic field
and radio frequency Faraday induction to image properties of the proton nucleus
of the hydrogen atom. This technique is called magnetic resonance imaging since
it exploits the property of nuclear magnetic resonance.

1.4 Projection Radiography
Projection radiography includes the following modalities:

• Routine diagnostic radiography, including chest x-rays, fluoroscopy, mam-
mography, and motion tomography (a form of tomography that is not
computed tomography)
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• Digital radiography, which includes all the scans in routine radiography, but
with images that are recorded digitally instead of on film

• Angiography, including universal angiography and angiocardiography, in
which the systems are specialized for imaging the body’s blood arteries and
vessels

• Neuroradiology, which includes specialized x-ray systems for precision
studies of the skull and cervical spine

• Mobile x-ray systems, which are small x-ray units designed for operating
rooms or emergency vehicles

• Mammography, which includes film-based or digital-based systems opti-
mized for breast imaging

All of these modalities are called ‘‘projection’’ radiography because they all
represent the projection of a 3-D object or signal onto a 2-D image.

The common element in all of these systems is the x-ray tube. As we will
see in Chapter 5, the x-ray tube generates an x-ray pulse in an approximately
uniform ‘‘cone beam’’ (shaped like a cone) geometry. This pulse passes through
the body and is attenuated by the intervening tissues. The x-ray intensity
profile across the beam exiting from the body is no longer uniform—shadows
have been created by dense objects (such as bone) in the body. This intensity
distribution is revealed using a scintillator, which converts the x-rays to visible
light. Finally, the light image on the scintillator is captured either on a large
sheet of photographic film, a camera, or solid-state detectors.

The most common modality in projection radiography is the chest x-ray;
a typical unit is shown in Figure 1.1(a). Here, the x-ray tube is located on the
column projecting down from the ceiling. The scintillator and detector can be
located either in the pedestal unit on the right or in the table itself. The radiologic
technologist stands at a console not shown, protected by lead, but able to see
through a window. A typical chest x-ray is shown in Figure 1.1(b). This image
shows the spine, ribs, heart, lungs, and many other features radiologists are
trained to identify and interpret. A key feature of this image is that structures
located at different depths in the body are overlaid (or superimposed) on the
2-D image. For example, we can see both front and back ribs in the chest x-ray
in Figure 1.1(b). This is a property of projection imaging, and it is common to

Figure 1.1
(a) A chest x-ray unit and
(b) a chest x-ray image.
Source: Courtesy of GE
Healthcare. (a) (b)
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all projection radiographic methods. True tomography, the imaging of a 2-D
slice of the 3-D body, cannot be directly accomplished using any modality in
projection radiography. More details about projection radiography are given in
Chapter 5.

1.5 Computed Tomography
As in projection radiography, CT uses x-rays. Unlike projection radiography,
however, CT collects multiple projections of the same tissues from different
orientations by moving the x-ray source around the body. CT systems have
rows of digital detectors whose signals are input directly to a computer, and
these signals are used to reconstruct one or more cross sections (slices) of
the human body. In this way, although CT systems acquire projections that
represent a ‘‘shadow’’ of the body, they generate truly tomographic images after
reconstruction.

The important historical phases in CT development are single-slice CT,
helical CT, and multiple-row detector CT (MDCT). Single-slice CT systems
acquire data within a single plane and reconstruct only one plane per rotation. In
helical CT systems, the x-ray tube and detectors continuously rotate around in a
large circle, while the patient is moved in a continuous motion through the circle’s
center. From the patient’s perspective, the x-ray tube carves out a helix; hence,
the name helical CT. The importance of this technique is in its ability to rapidly
acquire 3-D data, such as a whole body scan, in less than a minute. In MDCT
systems, there are many rows of detectors used to rapidly gather a cone of x-ray
data, comprising a 2-D projection of the 3-D patient. When the x-ray source and
detectors revolve rapidly around the patient (one to two revolutions per second),
very quick (near real-time) 3-D imaging is possible using these CT scanners.

A typical CT scanner is shown in Figure 1.2(a). In the center of the picture,
we can see the cylindrical opening in which the patient lies; a patient table is also
visible. Around the cylindrical opening is a housing containing both the x-ray
tube and the detector array. The gantry holding these components is capable
of spinning rapidly around the patient. The computer displays and keyboard in
the foreground are used for entering patient data and viewing images. Although
CT images can be printed on paper or film, the images are completely digital in
nature since they are computed from the measured projections. The CT image

Figure 1.2
(a) A CT scanner and
(b) a CT image of a slice
through the liver.
Source: Courtesy of GE
Healthcare.(a) (b)




